Icosabutate, a novel structurally engineered fatty-acid, exhibits potent anti-inflammatory and anti-fibrotic effects in a dietary mouse model resembling progressive human NASH.

David A Fraser 1, Xiaoyu Wang 1, Cristina Alonso 3, Serene Lek 4, Tore Skjaeret 4, Detlef Schuppan 5, Institute of Translational Immunology, University Medical Center, Mainz, Germany; 2NorthSea Therapeutics, 1411 DC Naarden, The Netherlands; 3OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio, Spain; 4Clinnovate Health UK Ltd, Glasgow, UK; 5Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA.

Disclosure: D. Schuppan acts as a consultant for NorthSea Therapeutics

Introduction

The liver harbours numerous fatty acid signalling-pathways and receptors of pivotal relevance to non-alcoholic steatohepatitis (NASH). Icosabutate (C19H29O4) is a structurally engineered liver-targeted eicosapentaenoic acid (EPA) derivative designed to promote efficient targeting of metabolic, inflammatory and fibrotic pathways in the liver via oxidation and esterification into complex lipids. We tested the effects of delayed therapy with icosabutate on hepatic inflammation and fibrosis in a dietary mouse model (CDAAA) that reflects most facets of progressive human NASH.

Methods

Delayed treatment effects [introduced during final 6 weeks of a 12-week choline deficient (CD) L-amino acid diet (51% fat) in 9 week old C57BL/6J mice] of low (56mg/kg, ICOSA-L) and high (112mg/kg, ICOSA-H) dose icosabutate delivered orally or Bydureon (BY), a long-acting GLP-1 receptor agonist (0.4mg/kg weekly injected subcutaneously), on multiple indices of hepatic inflammation and fibrosis were assessed (9 mice per group). Unstained thick FFPE liver histological sections were imaged using Genesis 2008® Imaging System (HistiIndex Pte Ltd), a nonlinear multiphoton optical imaging system to detect changes in collagen fiber number per area, fiber length and thickness. Changes in hepatic lipidomic profiles were also assessed to compare icosabutate with an equimolar (to ICOSA-L) dose of EPA.

Results: Bodyweight & hepatic inflammation

Food intake

Bodyweight

Left: Treatment with the GLP-1R agonist, Bydureon, but not icosabutate, is associated with a significant decrease in body weight. *p<0.01, ***p<0.001 vs CD

Below: Despite maintaining normal bodyweight, icosabutate reduces hepatic transcripts of inflammatory genes at least as efficiently as Bydureon. Neither agent decreases hepatic macrophage (CD68) cell content. *p<0.05, **p<0.01, ***p<0.001 vs CD

Hepatic fibrosis

Above: Delayed treatment with icosabutate (both doses) decreases hepatic fibrosis as measured via Col1A1 gene expression, hydroxyproline content and Sirius Red (SR) morphometry. Bydureon also reduces Col1A1 gene expression and collagen deposition but was without effect on hydroxyproline (no effects were seen with EPA, data not shown). *p<0.05, **p<0.01, ***p<0.001 vs CD

Right: Sirius Red stain: representative liver sections from individual mice in each treatment group

Choline sufficient (CS) Choline deficient (CD)

CD + ICOSA-L CD + ICOSA-H CD + BY

Below: Icosabutate (only ICOSA-L liver samples tested) significantly reduces collagen fiber number by 51% which reflects the almost complete disappearance of short (<8.5um) and thin (<3.5um) fibers. No significant effect was seen with Bydureon treatment. *p<0.01

Conclusions

• Oral treatment with icosabutate has a pronounced beneficial effect on fibrosis in a delayed intervention CDAAA mouse NASH model

• At a human equivalent dose of approx. 300mg/day, icosabutate brought fibrosis levels back to baseline despite delayed onset of treatment

• The reduction in fibrosis was associated with a pronounced >50% reduction in collagen fiber number

• Hepatic lipidomic analysis identified markedly reduced hepatic TG, DAG, FFA and CE along with potent reductions in oxidised omega-6 fatty acid metabolites

• Icosabutate, at a human equivalent dose of 300-600mg/day, shows excellent potential for treating human NASH with potent effects upon hepatic lipotoxicity, inflammation and fibrosis

CONTACT INFO: David A. Fraser, CSO, david.fraser@northseatherapeutics.com